TABLE OF CONTENTS – Sturkie's Avian Physiology 7th Edition

- Cover image
- Title page
- Table of Contents
- Copyright
- Dedication
- Contributors

· Part I. Undergirding themes

- Chapter 1. The importance of avian physiology
- 1.1. Specific examples of the importance of avian physiology
- 1.2. Conclusions
- Chapter 2. Avian genomics
- 2.1. Introduction
- 2.2. Genome
- 2.3. Genome assemblies
- 2.4. Connecting genome sequence to phenotype
- 2.5. Conclusions
- · Chapter 3. Transcriptomic analysis of physiological systems
- 3.1. Introduction
- 3.2. Early efforts
- 3.3. Nervous system
- 3.4. Endocrine system
- 3.5. Reproductive system
- 3.6. Immune system
- 3.7. Muscle, liver, adipose, and gastrointestinal tissues
- 3.8. Cardiovascular system
- 3.9. Hurdles and future developments
- Chapter 4. Avian proteomics
- 4.1. Introduction
- 4.2. Protein identification and analysis
- 4.3. Quantitative proteomics
- 4.4. Structural proteomics
- 4.5. Application of proteomics in avian research
- 4.6. Conclusions
- Chapter 5. Avian metabolomics
- 5.1. Introduction to metabolomics
- 5.2. Methods of metabolomics
- 5.3. Applications of metabolomics to avian physiology
- 5.4. Conclusions
- Chapter 6. Mitochondrial physiology—Sturkie's book chapter
- 6.1. Overview of mitochondria
- 6.2. Mitochondrial inefficiencies, oxidative stress, and antioxidants
- 6.3. Signal transduction and reverse electron transport

- 6.4. Matching energy production to energy need
- Chapter 7. Evolution of birds
- 7.1. Introduction
- 7.2. The dinosaur–bird transition
- 7.3. The Mesozoic avifauna
- 7.4. Assembling the modern bird
- 7.5. Reproduction and development
- 7.6. The rise of modern birds
- 7.7. The shape of modern bird diversity
- 7.8. The impact of humans on birds
- Chapter 8. Domestication of poultry
- 8.1. Introduction
- 8.2. Domestication
- 8.3. Conclusions

Part II. Sensory biology and nervous system theme

- Chapter 9. The avian somatosensory system: a comparative view
- 9.1. Introduction
- 9.2. Body somatosensory primary afferent projections in different species
- 9.3. Ascending projections of the dorsal column nuclei
- 9.4. Telencephalic projections of thalamic nuclei receiving somatosensory input
- 9.5. Somatosensory primary afferent projections from the beak, tongue, and syrinx to the trigeminal column
- 9.6. Nucleus basorostralis
- 9.7. The meeting of the spinal and trigeminal systems
- 9.8. The somatosensorimotor system in birds
- 9.9. Somatosensory projections to the cerebellum
- 9.10. Magnetoreception and the trigeminal system
- 9.11. Summary and conclusions
- Chapter 10. Avian vision
- 10.1. Introduction
- 10.2. What vision does?
- 10.3. Variations in avian vision
- 10.4. Variations in eyes
- 10.5. Bird eyes: function, structure, and variations
- 10.6. The visual fields of birds
- 10.7. Spatial resolution in birds
- 10.8. Contrast sensitivity
- 10.9. Closing remarks
- Chapter 11. Avian hearing
- 11.1. Introduction: what do birds hear?
- 11.2. Outer and middle ear
- 11.3. Basilar papilla (cochlea)
- 11.4. The auditory brain
- 11.5. Summary
- Chapter 12. Chemesthesis and olfaction
- 12.1. Chemical senses
- 12.2. Chemesthesis

- 12.3. Neural organization
- 12.4. Olfaction
- 12.5. Summary
- · Chapter 13. Taste in birds
- 13.1. Introduction
- Chapter 14. Avian nociception and pain
- 14.1. Introduction
- 14.2. What evidence is required to demonstrate the capacity for pain?
- 14.3. Conclusions
- Chapter 15. Magnetoreception in birds and its use for long-distance migration
- 15.1. Introduction
- 15.2. Magnetic fields
- 15.3. The Earth's magnetic field
- 15.4. Changing magnetic fields for experimental purposes
- 15.5. Birds use information from the Earth's magnetic field for various behaviors
- 15.6. The magnetic compass of birds
- 15.7. Do birds possess a magnetic map?
- 15.8. Interactions with other cues
- 15.9. How do birds sense the Earth's magnetic field?
- 15.10. The induction hypothesis
- 15.11. The magnetic-particle—based hypothesis
- 15.12. The light-dependent hypothesis
- 15.13. Irreproducible results and the urgent need for independent replication
- 15.14. Where do we go from here?
- Chapter 16. The avian subpallium and autonomic nervous system
- 16.1. Introduction
- 16.2. Components of the subpallium
- 16.3. Components of the autonomic nervous system
- 16.4. Integration of the subpallium and ANS in complex neural circuits in birds: two examples involving vasoactive intestinal polypeptide as a regulator
- 16.5. Summary and conclusions

Part III. Organ system theme

- Chapter 17. Blood
- 17.1. Introduction
- 17.2. Plasma
- 17.3. Erythrocytes
- 17.4. Blood gases
- 17.5. Leukocytes
- 17.6. Thrombocytes
- 17.7. Other cells types in avian plasma
- 17.8. Parasites and blood cells
- 17.9. Clotting
- Chapter 18. The cardiovascular system
- 18.1. Introduction
- 18.2. Heart
- 18.3. General circulatory hemodynamics
- 18.4. The vascular tree

- 18.5. Control of the cardiovascular system
- 18.6. Environmental cardiovascular physiology
- Chapter 19. Renal and extrarenal regulation of body fluid composition
- 19.1. Introduction
- 19.2. Intake of water and solutes
- 19.3. The kidneys
- 19.4. Extrarenal organs of osmoregulation: introduction
- 19.5. The lower intestine
- 19.6. Salt glands
- 19.7. Evaporative water loss
- Chapter 20. Respiration
- 20.1. Overview
- 20.2. Anatomy of the avian respiratory system
- 20.3. Ventilation and respiratory mechanics
- 20.4. Pulmonary circulation
- 20.5. Gas transport by blood
- 20.6. Pulmonary gas exchange
- 20.7. Tissue gas exchange
- 20.8. Control of breathing
- 20.9. Defense systems in avian lungs
- Chapter 21. Gastrointestinal anatomy and physiology
- 21.1. Anatomy of the digestive tract
- 21.2. Anatomy of the accessory organs
- 21.3. Motility
- 21.4. Neural and hormonal control of motility
- 21.5. Secretion and digestion
- 21.6. Absorption
- 21.7. Age-related effects on gastrointestinal function
- 21.8. Gastrointestinal microbiota
- 21.9. Intestinal barrier
- Chapter 21A. Functional properties of avian intestinal cells
- 21A.1. Organization of the small intestine
- 21A.2. Development of the small intestine from the late embryonic to early posthatch period in chickens
- 21A.3. Cellular organization of the intestinal crypt and villi
- 21A.4. Expression of host defense peptides in intestinal cells
- 21A.5. Effect of intestinal pathogens and environmental factors on nutrient transporter and host defense peptide expression
- 21A.6. Tight junction complex between intestinal epithelial cells
- 21A.7. Chicken intestinal microbiota
- 21A.8. In ovo delivery of biomolecules
- 21A.9. In vitro systems: intestinal epithelial cell cultures and organoids
- 21A.10. Conclusion
- Chapter 22. Avian bone physiology and poultry bone disorders
- 22.1. Introduction
- 22.2. Embryonic skeletal differentiation
- 22.3. Cartilage
- 22.4. Bone
- 22.5. Poultry bone disorders
- 22.6. Conclusion

- Chapter 23. Skeletal muscle
- 23.1. Introduction
- 23.2. Diversity of avian skeletal muscle
- 23.3. Muscle structure and contraction
- 23.4. Skeletal muscle fiber types
- 23.5. Embryonic development of skeletal muscle
- 23.6. Postnatal or posthatch skeletal muscle development
- 23.7. Muscle development: function of myogenic regulatory factors
- 23.8. Growth factors affecting skeletal muscle myogenesis
- 23.9. Satellite cells and myoblast heterogeneity
- 23.10. Novel genes involved in avian myogenesis
- 23.11. Recent emerging breast muscle necrotic and fibrotic myopathies
- 23.12. The effect of fibrillar collagen on the phnotype of necrotic breast muscle myopathies resulting in fibrosis
- 23.13. Relationship of fibrillar collagen organization to the phnotype of breast muscle necrotic/fibrotic myopathies
- 23.14. Regulation of muscle growth properties by cell-membrane associated extracellular matrix macromolecules
- 23.15. Strategies to reduce myopathies
- 23.16. Summary
- Chapter 24. Immunophysiology of the avian immune system
- 24.1. Introduction
- 24.2. Innate immune system recognition, sensing, and function
- 24.3. Acquired immune recognition and function
- 24.4. Gastrointestinal tract and immune system of poultry
- 24.5. Tissue immunometabolism: tissue homeostasis and tissue resident immune cells

Part IV. Metabolism theme

- Chapter 25. Carbohydrate metabolism
- 25.1. Overview of carbohydrate metabolism in birds
- 25.2. Carbohydrate chains in glycoproteins
- 25.3. Lactate and pyruvate
- 25.4. Glycerol
- 25.5. Glycogen
- 25.6. Glucose and fructose utilization
- 25.7. Glucose transporters
- 25.8. Intermediary metabolism
- 25.9. Gluconeogenesis
- 25.10. Carbohydrate digestion and absorption
- 25.11. Putative roles of other monosaccharides
- 25.12. Conclusions
- Chapter 26. Adipose tissue and lipid metabolism
- 26.1. Introduction
- 26.2. Development of adipose tissue
- 26.3. Structure, cellularity
- 26.4. Body composition
- 26.5. Functions of adipose tissue
- 26.6. Lipid metabolism

- 26.7. Factors affecting fat metabolism and deposition
- 26.8. Summary and conclusions
- Chapter 27. Protein metabolism
- 27.1. Introduction
- 27.2. Major proteins
- 27.3. Muscle proteins
- 27.4. Other proteins
- 27.5. Digestion of proteins
- 27.6. Protein synthesis
- 27.7. Protein degradation
- 27.8. Control of protein synthesis and degradation
- 27.9. Proteins and reproduction
- 27.10. Amino acids and metabolism
- 27.11. Nitrogenous waste
- 27.12. Amino acid derivatives
- 27.13. Extranutritional effects of amino acids
- 27.14. Other uses of avian proteins
- Chapter 28. Food intake regulation
- 28.1. Introduction
- 28.2. Peripheral regulation of food intake
- 28.3. Central nervous system control of food intake
- 28.4. Classical neurotransmitters
- 28.5. Peptides
- 28.6. Selection for single growth-related traits alters food intake control mechanisms
- 28.7. Other pathways involved in central appetite regulation

Part V. Endocrine theme

- Chapter 29. Overviews of avian neuropeptides and peptides
- 29.1. Introduction
- 29.2. Summary
- · Chapter 30. Pituitary gland
- 30.1. Introduction
- 30.2. Embryonic development of the pituitary gland
- 30.3. Anatomy of the pituitary gland
- 30.4. Gonadotropins
- 30.5. Thyrotropin
- 30.6. Growth hormone
- 30.7. Prolactin
- 30.8. Pro-opiomelanocortin-derived peptides—adrenocorticotropic hormone, lipotropic hormone, melanocyte-stimulating hormone, and β-endorphin
- 30.9. Other anterior pituitary gland peptides/proteins
- 30.10. Pars tuberalis
- 30.11. Neurohypophysis
- Chapter 31. Thyroid gland
- 31.1. Introduction
- 31.2. Thyroid gland structure and development
- 31.3. Thyroid hormone synthesis and release
- 31.4. Thyroid hormone metabolism and action

- 31.5. Physiological effects of thyroid hormones
- 31.6. Environmental influences on thyroid function
- Chapter 32. Mechanisms and hormonal regulation of shell formation: supply of ionic and organic precursors, shell mineralization
- 32.1. Introduction
- 32.2. Structure, composition, and formation of the eggshell
- 32.3. Mineral supply: a challenge for calcium metabolism
- 32.4. Hormones involved in calcium metabolism of laying hens: vitamin D, parathyroid hormone, calcitonin, and fibroblast growth factor-23
- 32.5. Intestinal absorption of calcium
- 32.6. Medullary bone
- 32.7. Uterine secretions of Calcium
- 32.8. Mineralization of the eggshell
- Chapter 33. Adrenals
- 33.1. Anatomy
- 33.2. Adrenocortical hormones
- 33.3. Physiology of adrenocortical hormones
- 33.4. Adrenal chromaffin tissue hormones
- Chapter 34. Endocrine pancreas
- 34.1. Introduction
- 34.2. Pancreas embryogenesis and development
- 34.3. Factors controlling pancreatic insulin and glucagon release in birds
- 34.4. Insulin and glucagon peptides
- 34.5. Glucagon and insulin receptors
- 34.6. General effects of glucagon and insulin
- 34.7. Experimental or genetical models
- 34.8. Conclusion

Part VI. Reproductive theme

- Chapter 35. Reproduction in the female
- 35.1. Introduction
- 35.2. The ovary
- 35.3. The oviduct
- 35.4. The ovulatory cycle
- 35.5. Egg transportation and oviposition
- 35.6. The egg
- Chapter 36. Reproduction in male birds
- 36.1. Introduction
- 36.2. Reproductive tract anatomy
- 36.3. Ontogeny of the reproductive tract
- 36.4. Development and growth of the testis
- 36.5. Hormonal control of testicular function
- 36.6. Spermatogenesis and extragonadal sperm maturation
- 36.7. Seasonal gonadal recrudescence and regression
- Chapter 37. The physiology of the avian embryo
- 37.1. Introduction
- 37.2. The freshly laid egg
- 37.3. Incubation
- 37.4. Development of physiological systems

- 37.5. Artificial incubation
- 37.6. Conclusions and future directions

Part VII. Cross-cutting themes

- Chapter 38. Stress ecophysiology
- 38.1. Introduction
- 38.2. Stress, energy, and glucocorticoids
- 38.3. Adrenocortical response to environmental change
- 38.4. Phenotypic plasticity and selection on the stress response
- 38.5. Field methods to study adrenocortical function
- Glossary of terms
- Chapter 39. Avian welfare: fundamental concepts and scientific assessment
- 39.1. Introduction
- 39.2. What is animal welfare?
- 39.3. Birds are sentient and their welfare should be considered
- 39.4. How can bird welfare be scientifically assessed?
- 39.5. Avian welfare research to date
- 39.6. Case study—evaluation of the potential for chickens to experience negative states due to carbon dioxide stunning
- 39.7. General conclusions
- Chapter 40. Reproductive behavior
- 40.1. Introduction
- 40.2. Regulation of reproductive behavior
- 40.3. Environmental factors
- 40.4. Social factors
- 40.5. Age and experience
- 40.6. Endocrine and neuroendocrine regulation of reproductive behavior
- Chapter 41. Growth
- 41.1. Introduction
- 41.2. Evolutionary perspectives of avian growth
- 41.3. Altricial versus precocial birds
- 41.4. Sexual dimorphism in growth
- 41.5. Growth hormone
- 41.6. Insulin-like growth factors
- 41.7. Thyroid hormones (hypothalamo-pituitary-thyroid axis)
- 41.8. Sex steroid hormones
- 41.9. Adrenocorticotropin and glucocorticoids (hypothalamo-pituitaryadrenocortical axis)
- 41.10. Insulin
- 41.11. Growth factors
- 41.12. Epidermal growth factor and transforming growth factor-α
- 41.13. Transforming growth factor-β
- 41.14. Bone morphogenetic protein
- 41.15. Fibroblast growth factors
- 41.16. Neurotrophins
- 41.17. Cytokines
- 41.18. Genetics and growth
- 41.19. Nutrition and growth
- 41.20. Environment and growth

- Chapter 42. Circadian rhythms
- 42.1. Environmental cycles
- 42.2. Circadian rhythms
- 42.3. Photoreceptors
- 42.4. Pacemakers
- 42.5. Sites of melatonin action
- 42.6. Avian circadian organization
- 42.7. Molecular biology
- 42.8. Conclusion and perspective
- Chapter 43. Circannual cycles and photoperiodism
- 43.1. Annual cycles
- 43.2. Annual cycles of birds
- 43.3. Circannual rhythms
- 43.4. Photoperiodism
- 43.5. Neuroendocrine regulation of photoperiodic time measurement
- 43.6. Molecular mechanisms of photoperiodism
- 43.7. Comparison to other vertebrate taxa
- 43.8. Conclusion
- Chapter 44. Annual schedules
- 44.1. Introduction
- 44.2. Background: patterns of environmental variation and avian annual schedules
- 44.3. Effects of environmental cues on annual scheduling and underlying mechanisms
- 44.4. Adaptive variation in cue processing mechanisms as it relates to life in different environments
- 44.5. Integrated coordination of stages and carryover effects
- 44.6. Variation in scheduling mechanisms and responses to rapid environmental change
- 44.7. Effects of seasonality on constitutive processes
- Chapter 45. Regulation of body temperature: patterns and processes
- 45.1. Introduction
- 45.2. The evolution of avian endothermy
- 45.3. Models of avian thermoregulation
- 45.4. Body temperature
- 45.5. Avenues of heat transfer and behavioral modifications
- 45.6. Metabolic heat production
- 45.7. Physiological control of thermoregulation
- 45.8. Development of thermoregulation
- 45.9. Avian thermoregulation and global heating
- Chapter 46. Flight
- 46.1. Introduction
- 46.2. Scaling effects of body size
- 46.3. Energetics of bird flight
- 46.4. The flight muscles of birds
- 46.5. Development of locomotor muscles and preparation for flight
- 46.6. Metabolic substrates for endurance flight
- 46.7. The cardiovascular system
- 46.8. The respiratory system
- 46.9. Migration and long-distance flight performance

- 46.10. Flight at high altitude
- Chapter 47. Physiological challenges of migration
- 47.1. Introduction
- 47.2. Adaptations of birds for long-duration migratory flights
- 47.3. Endocrinology of migration
- 47.4. Physiological aspects of migratory preparation and long-duration flight: fueling/flight cycle
- 47.5. Beyond systems
- Chapter 48. Actions of toxicants and endocrine disrupting chemicals in birds
- 48.1. Introduction
- 48.2. Environmental chemicals: utilities and hazards?
- 48.3. Life cycle of chemicals: endocrine disrupting chemicals in the environment
- 48.4. Classes of endocrine disrupting chemicals and their physiological actions
- 48.5. Methods for assessing risk
- 48.6. Frameworks for visualizing risk and effects from endocrine disrupting chemical exposure
- 48.7. Why are birds unique?
- 48.8. Investigating endocrine disrupting chemical effects in an avian model: the Japanese quail two-generation test
- 48.9. Conclusions
- Chapter 49. Blood supplement
- Chapter 50. Carbohydrate supplementary materials
- Index.