TABLE OF CONTENTS – Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability

List of Contributors

Preface

Acknowledgments

Section I General Topics 1

1 How to Determine the Geographical Origin of Food by Molecular Techniques 3

Aly Farag El Sheikha

- 1.1 Linkage Between Food and Its Geographical Origin: Historical View 3
- 1.2 Scope and Approach 4
- 1.3 Definitions Related to Tracking of Food Origins 4
- 1.4 Driving Forces for Determining the Geo• Jorigin of Food 8
- 1.5 Geo•] origin Determination ... Evolution of Molecular Techniques 13
- 1.6 Pros and Cons of Molecular Techniques Used as Geo•]Discriminative Tools of Food 16
- 1.7 Conclusions 17

References 18

2 Unraveling Pathogenic Behavior of Phytopathogens through Advanced Molecular Techniques *27*

Avantina S. Bhandari and Neeta Sharma

- 2.1 Introduction 27
- 2.2 Plant Pathogens: A Menace to Agricultural Productivity 28
- 2.3 Future Directions 38

References 39

3 Molecular Characterization of Ochratoxigenic Fungal Flora as an Innovative Tool to Certify Coffee Origin 47

Aly Farag El Sheikha and Nadege Donkeng Nganou

- 3.1 Introduction: Coffee Factsheet 47
- 3.2 The Microflora of Coffee 50
- 3.3 Detection of Ochratoxigenic Fungi in Coffee by Molecular Techniques 55
- 3.4 Using Molecular Detection of OTA•]producing Fungi to Certify Coffee Origin: Is it Possible? 57
- 3.5 Conclusions and Future Perspectives 63

References 63

4 Molecular and "Omics" Techniques for Studying Gut Microbiota Relevant to Food Animal Production 71

Joshua Gong, Chengbo Yang, and Ehsan Khafipour

- 4.1 Introduction 71
- 4.2 Methods for Studying Gut Microbiota Composition 72
- 4.3 Culture | independent Techniques 72
- 4.4 Tools for Functional Studies of Gut Microbiota 75
- 4.5 "Omics" 76
- 4.6 Animal Models 78
- 4.7 Bioinformatics 79
- 4.8 Application in Poultry and Swine Research 80
- 4.9 Integrated Approaches for Studying Gut Microbiome 83
- 4.10 Conclusions and Future Directions 84

Acknowledgments 85

References 85

5 Molecular Techniques for Making Recombinant Enzymes Used in Food Processing 95

Wenjing Hua, Aly Farag El Sheikha, and Jianping Xu

5.1 Introduction 95

- 5.2 Molecular Strategies to Produce Recombinant Enzymes Used in the Food Industry *96*
- 5.3 Applications and Safety Issues of Enzymes in the Food Industry 106
- 5.4 Conclusions and Future Perspectives 109

Section II Fruits and Vegetables 115

6 Molecular Identification and Distribution of Yeasts in Fruits 117 Justine Ting, Rui Xu, and Jianping Xu

- 6.1 Introduction 117
- 6.2 Molecular Methods for Distinguishing Yeast Species and Strains 118
- 6.3 Yeast Diversity in Wild/fresh Fruits 120
- 6.4 Yeast Diversity in Processed Fruits 134
- 6.5 Conclusions and Future Perspectives 141

Acknowledgments 142

References 142

7 Current and New Insights on Molecular Methods to Identify Microbial Growth in Fruit Juices 145

Elena Rosello•]Soto, Sonia Barba•]Orellana, Mohamed Koubaa, Shahin Roohinejad, Francisco Quilez, and Francisco J. Barba

- 7.1 Introduction 145
- 7.2 Microorganisms in Fruit Juices 146
- 7.3 Conventional Identification Techniques 148
- 7.4 Non•] conventional Identification Techniques 150
- 7.5 Molecular Techniques 151
- 7.6 Conclusions and Future Perspectives 154

References 154

Section III Fish and Meat Products (Non-Fermented) 161

8 Molecular Techniques Related to the Identification of the Bacterial Flora of Seafood 163

Robert E. Levin

- 8.1 Introduction 163
- 8.2 Major Seafood Spoilage Bacteria 164
- 8.3 Seafood• |borne Bacterial Pathogens 183
- 8.4 Conclusions and Future Perspectives 201

References 201

9 Assessment of the Microbial Ecology of Meat and Meat Products at the Molecular Level: Current Status and Future Perspectives 215 Spiros Paramithiotis, Agni Hadjilouka, and Eleftherios H. Drosinos

- 9.1 Introduction 215
- 9.2 Extraction of Nucleic Acids 216
- 9.3 Microbial Communities Assessment 216
- 9.4 Detection of Selected Bacterial Target 220
- 9.5 Biodiversity Assessment 225
- 9.6 Conclusion and Future Perspectives 226

References 227

Section IV Fermented Foods and Beverages 239

10 Revolution in Fermented Foods: From Artisan Household Technology to the Era of Biotechnology 241

Aly Farag El Sheikha

- 10.1 Introduction 241
- 10.2 Historical View: Where and When Did Fermentation Start? 242
- 10.3 Fermented Foods: From the Past to the Current Era 243
- 10.4 Fermented Foods and Health Effects 246
- 10.5 Is it Possible to Trace the Geographical Origin of Fermented Foods? 249
- 10.6 Conclusions and Future Perspectives 252

11 Molecular Techniques for the Identification of LAB in Fermented Cereal and Meat Products 261

Malik Altaf Hussain

- 11.1 Introduction 261
- 11.2 Fermented Food Products 262
- 11.3 Lactic Acid Bacteria and Fermented Foods 265
- 11.4 Molecular Approaches Used to Study Fermenting Microflora 268
- 11.5 Identification of Lab in Fermented Cereal and Meat Products 269
- 11.6 Advantages of Molecular Techniques 275
- 11.7 Concluding Remarks 275

Acknowledgment 277

References 277

12 Molecular Techniques and Lactic Acid•]Fermented Fruits and Vegetables 285

Aly Farag El Sheikha

- 12.1 Introduction 285
- 12.2 Fermented Fruits and Vegetables: Between the Past and the Present 286
- 12.3 Benefits of Fermented Fruits and Vegetables 286
- 12.4 Techniques of Lab Analysis Used in Fermented Fruits and Vegetables 288
- 12.5 Future Applications 300
- 12.6 Conclusions 300

References 300

13 New Trends in Molecular Techniques to Identify Microorganisms in Dairy Products 309

Elena Rosello•]Soto, Sonia Barba•]Orellana, Francisco J. Barba, Francisco Quilez, Shahin Roohinejad, and Mohamed Koubaa

- 13.1 Introduction 309
- 13.2 Polymerase Chain Reaction (PCR) | based Methods 310

- 13.3 Fluorescent In Situ Hybridization 316
- 13.4 Immuno]based Methodologies, Biochips, and Nanosensors 317
- 13.5 Benefits and Limitations of Molecular Techniques 318
- 13.6 Conclusions and Future Perspectives 318

14 Molecular Techniques for the Detection and Identification of Yeasts in Wine 323

Cecilia Diaz, Grigori Badalyan, and Mark Bucking

- 14.1 Introduction 323
- 14.2 Methods of Identification and Detection of Biodiversity 327
- 14.3 Enumeration of Wine Yeasts 330
- 14.4 Diversity of Wine Yeasts 332
- 14.5 Conclusions and Future Perspectives 334

References 334

Section V Foodborne Pathogens and Food Safety 341

15 Rapid Detection of Food Pathogens Using Molecular Methods 343

R.M.U.S.K. Rathnayaka, Rakshit K. Devappa, and Sudip Kumar Rakshit

- 15.1 Introduction 343
- 15.2 Methods Used to Detect Foodborne Pathogens 344
- 15.3 Conclusions 355

References 355

16 Biosensor•]Based Techniques: A Reliable and Primary Tool for Detection of Foodborne Pathogens *361*

Moni Gupta, Baby Summuna, Sachin Gupta, and Deepika Sharma

- 16.1 Introduction 361
- 16.2 Ideal Requirements for Biosensor | Based Microbial Detection Assay 366
- 16.3 Need for Rapid Method 367
- 16.4 Classification of Biosensors 367

16.5 Conclusions and Future Perspectives 378

References 379

17 Molecular Identification and Detection of Foodborne and Feedborne Mycotoxigenic Fungi 385

Glaucia E.O. Midorikawa, Robert N.G. Miller, and Daniela M. de C. Bittencourt

- 17.1 Mycotoxigenic Fungi 385
- 17.2 Polymerase Chain Reaction•]based Characterization of Mycotoxigenic Fungi 386
- 17.3 Genomics of Mycotoxigenic Fungi 394
- 17.4 Functional Genomics of Mycotoxigenic Fungi 396
- 17.5 Conclusions and Future Perspectives 398

References 398

18 Molecular Identification of Enteric Viruses in Fresh Produce 409 Martin D'Agostino and Nigel Cook

- 18.1 Introduction 409
- 18.2 Sample Treatment 410
- 18.3 Sample Receipt 410
- 18.4 Removal of Viruses from the Food Surfaces 410
- 18.5 Removal of Food Substances 411
- 18.6 Concentration of Viruses 411
- 18.7 Nucleic Acid Extraction 411
- 18.8 Detection Assay 412
- 18.9 ISO 15216•]1/2:2013: The Future "Gold Standard" 413
- 18.10 Quantitation *415*
- 18.11 What is a Positive? 415
- 18.12 Future Developments and Requirements 416
- 18.13 Conclusions and Future Perspectives 416

Section VI Future Perspectives 421

19 Molecular Techniques and Foodstuffs: Innovative Fingerprints, Then What? 423

Aly Farag El Sheikha and Jianping Xu

- 19.1 Introduction *423*
- 19.2 Emerging Fingerprinting Technologies 424
- 19.3 DNA Fingerprints 426
- 19.4 Conclusions and Future Perspectives 428

References 431

Index 435.